王中林和宋金会巧妙的利用竖直结构的氧化锌纳米线的独特性质,在原子力显微镜的帮助下,研制出将机械能转化为电能的世界上最小的发电装置—纳米发电机。他们利用氧化锌纳米线容易被弯曲的特性,在纳米线内部外部分别造成压缩和拉伸。竖直生长的氧化锌是纤锌矿结构,同时具有半导体性能和压电效应。压电效应是由材料中的力学形变而导致的电荷极化的效应,它是实现力电耦合和传感的重要物理过程。氧化锌纳米线的这种独特结构导致了弯曲纳米线的内外表面产生极化电荷。他们用导电原子力显微镜的探针针尖去弯曲单个的氧化锌纳米线,输入机械能。同时由于氧化锌的半导体特性,他们巧妙地把这一特性和氧化锌纳米线的压电特性耦合起来,用半导体和金属的肖特基势垒将电能暂时储存在纳米线内,然后用导电的原子力显微镜探针接通这一电源,并向外界输电,从而完美的实现了纳米尺度的发电功能。更重要的是这一纳米发电机竟然能达到17%~30%的发电效率,为自发电的纳米器件奠定了物理基础。
他们具体的试验设置及过程是:首先用高温热蒸发气相沉积的方法在氧化铝衬底上合成非常均匀规则的单晶纳米线,由于晶格匹配,这些纳米线都是垂直生长,具有规则的形貌(见图A), 而且和衬底结合的十分紧密。然后他们用金属银连通衬底的底部导电部分。同时,运用导电的原子力显微镜作为机械能输入和电能的收集部分(见图B)。弯曲并测量氧化锌纳米线的原子力显微镜探针针尖是镀了白金的硅材料制成,即保证了弯曲纳米线所需要的刚度同时也具备了良好的导电性。更重要的是这一设置使得纳米线底部是金属银和半导体氧化锌的连接,形成了欧母接触(ohmic contact),而针尖上白金和半导体氧化锌的接触形成了肖特基势垒。正是由于这一巧妙的设置加上单晶氧化锌纳米线独特的压电性能,使得被弯曲拉长的氧化锌纳米线一面所产生的正偏压电能不能释放,实现了电荷的分离和电荷积累。当原子力显微镜的探针继续扫过纳米线顶部到纳米线被压缩部分时,由于压缩部分的氧化锌纳米线一面是负电压,积累的压电电荷得到释放,为外电路输出电流(见图C)。从而在世界上首次实现了纳米尺度机械能转化为电能的装置—纳米发电机。